An FIS for Early Detection of Defect Prone Modules
نویسندگان
چکیده
Early prediction of defect prone modules helps in better resource planning, test planning and reducing the cost of defect correction in later stages of software lifecycle. Early prediction models based on design and code metrics are difficult to develop because precise values of the model inputs are not available. Conventional prediction techniques require exact inputs, therefore such models cannot always be used for early predictions. Innovative prediction methods that use imprecise inputs, however, can be applied to overcome the requirement of exact inputs. This paper presents a fuzzy inference system (FIS) that predicts defect proneness in software using vague inputs defined as fuzzy linguistic variables. The paper outlines the methodology for developing the FIS and applies the model to a real dataset. Performance analysis in terms of recall, accuracy, misclassification rate and a few other measures has been conducted resulting in useful insight to the FIS application. The FIS model predictions at an early stage have been compared with conventional prediction methods (i.e. classification trees, linear regression and neural networks) based on exact values. In case of the FIS model, the maximum and the minimum performance shortfalls were noticed for true negative rate (TNRate) and F measure respectively. Whereas for Recall, the FIS model performed better than the other models even with the imprecise inputs.
منابع مشابه
ارائه یک روش فازی-تکاملی برای تشخیص خطاهای نرمافزار
Software defects detection is one of the most important challenges of software development and it is the most prohibitive process in software development. The early detection of fault-prone modules helps software project managers to allocate the limited cost, time, and effort of developers for testing the defect-prone modules more intensively. In this paper, according to the importance of soft...
متن کاملCost-sensitive boosting neural networks for software defect prediction
Software defect predictors which classify the software modules into defect-prone and not-defect-prone classes are effective tools to maintain the high quality of software products. The early prediction of defect-proneness of the modules can allow software developers to allocate the limited resources on those defect-prone modules such that high quality software can be produced on time and within...
متن کاملDefect Prediction for Object Oriented Software using Support Vector based Fuzzy Classification Model
In software development research, early prediction of defective software modules always attracts the developers because it can reduces the overall requirements of software development such as time and budgets and increases the customer satisfaction. In the current context, with constantly increasing constraints like requirement ambiguity and complex development process, developing fault free re...
متن کاملEnhance Rule Based Detection for Software Fault Prone Modules
Software quality assurance is necessary to increase the level of confidence in the developed software and reduce the overall cost for developing software projects. The problem addressed in this research is the prediction of fault prone modules using data mining techniques. Predicting fault prone modules allows the software managers to allocate more testing and resources to such modules. This ca...
متن کاملDeriving Interaction-Prone Scenarios in Feature Interaction Filtering with Use Case Maps
Feature interactions (FIs, in short) occur when features of different communication services interfere with each other. The FI filtering is a pre-processing before the FI detection, which roughly identifies FI-prone service combinations based on simple indications of the FIs. We have previously proposed an FI filtering method at requirements stage using Use Case Maps (UCMs). This method identif...
متن کامل